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The growth in size and complexity of scaling applications
and the systems on which they run pose challenges in analyz-
ing and improving overall performance. With metrics coming
from thousands to millions of processes, visualization tech-
niques are necessary to make sense of the increasing amount
of data. To aid the process of exploration and understanding,
we announce the initial release of Boxfish, an extensible tool
for manipulating and visualizing data pertaining to applica-
tion behavior. Combining and visually presenting data and
knowledge from multiple domains, such as the application’s
communication pattern and hardware’s network configuration
and routing policies, can yield the insight necessary to discover
the underlying causes of observed behavior. Boxfish allows
users to query, filter and project across these domains to create
interactive, linked visualizations.

I. PROJECTING DATA ACROSS DOMAINS

We describe the association of elements that exist in one
domain with the elements of another as a projection. A map
file, which associates integer MPI ranks with coordinate-
denoted hardware nodes and threads, is an example of a
commonly used projection. Schulz et al. [1] advocated the use
of projections in interpretting performance data and defined
three domains of interest – hardware, application and commu-
nication. The hardware domain includes performance counters.
The application domain includes information relating to the
application, such as physics measurements in a simulation or
matrix properties in a linear algebra library. The communi-
cation domain includes messages sent between processes and
communication sets of nodes such as MPI communicators.
Boxfish recognizes these domains. Contributed modules may
add others.

Boxfish is designed to support projecting data across do-
mains. When filters or queries are written requiring attributes
from multiple domains, or when a view requires attribute
information in a native domain, Boxfish which search its
available projections to make the necessary transformations.
This allows users to view data such as the load on nodes
that had a range of values in previous run or the average
wait time for communicators in a particular phase. Data tables
corresponding to runs may have default preferred projections.
Projections can be added from files, created based on data
attributes, or composed from existing ones. More complex pro-
jections may be added through future or contributed modules.

Fig. 1. A 3D torus represented in 2D (left) and 3D (right). Both views
represent elements of the hardware domain. However, nodesare colored by
their MPI sub-communicators. Links are colored by traffic. These views are
side by side in Boxfish, indicating they are siblings in the filter hierarchy,
indicating they show the same data. In the 2D view, selected nodes are
represented by larger size. In the 3D view, the same nodes are selected,
represented by opacity.

Figure 1 displays a projection from the communication
domain onto the hardware domain. The nodes of the hard-
ware domain are colored by the values of the MPI sub-
communicators in the communication domain. This partic-
ular case is a one-to-many projection, where a single sub-
communicator maps to many nodes. Boxfish also handles
many-to-one projections through a variety of data combining
functions.

II. FILTER HIERARCHY IN BOXFISH

Inspired by the data flow in Epinome [2], Boxfish allows
filters and views to be grouped hierarchically. This allows both
the data manipulation and the view interactions to be applied
simultaneously to several views at once. Users can move views
and groups of views anywhere in the hierarchy, dynamically
changing the presented data.

When elements are selected in one view, corresponding
elements in other views may be automatically highlighted
depending on their position in the hierarchy and the policies
of each subtree. Though the elements shown in each view may



Fig. 2. Two potential Boxfish configurations. On the left, the user has four
views, two of which share a filter on their information and one of which has
no filter. On the right, the user has moved View 1 under Filter 2, so its data
matches that of View 3 and View 4.

not be the same, selection in one can induce selection in the
others if the first set of elements can be projected onto the
others.

III. BOXFISH VIEWS

Boxfish is designed to facilitate the addition of new views
by unifying the processing and manipulating of input data and
handling shared view actions such as highlighting. Details on
writing a Boxfish view are available with the user manual. In
this section, we briefly describe the initial set of views in the
initial Boxfish release.

Plot – Boxfish’s default plotting module can create scatter
plots and histograms of (potentially aggregated) data attributes.
Attributes from one or multiple domains may be plotted
against the natural elements of any domain for which a
projection exists. The plots offers a familiar method of looking
at the data and selecting features of interest which can then
be highlighted in other views.

Torus/Mesh 3D – Three-dimensional torus and mesh net-
works are represented in their conventional configuration. In
the case of the torus, wrap-around links are shown from one
of their two end-nodes. The location of this ‘seam’ in any of
the dimensions can be changed. Attributes are displayed on
nodes or links through use of color. This view is shown in
Figure 1.

Torus/Mesh 2D – Three-dimensional torus and mesh net-
works are arranged on a 2D plane to eliminate occlusion and
ease selection. To achieve this representation, the links in one
direction are not shown. Users can change which dimension
is omitted and all three configurations are shown in overview
‘minimaps’ that aggregate attribute values on the links. Like its
3D counterpart, attributes are shown in this view by coloring
the nodes and links. This view is shown in Figure 1.

Communication graph – The set of messages sent between
pairs of processes can be displayed as an adjacency matrix
where the number of messages or bytes sent in a single
direction is depicted as a color value. The order of the
processes may be altered to represent other attributes.

IV. BOXFISH IN PRACTICE

Bhatele et al. [3] used Boxfish’s 3D torus view to help
identify the cause of a scaling problem in SAMRAI [4], an
adaptive mesh refinement library. Nodes that spent the longest
in a load balancing phase appeared clustered in the 3D torus

view, leading to further investigation into the cause of that
effect.

Boxfish’s 2D torus view has been used to understand
network behavior [5] in pF3D [6], a laser-plasma interaction
simulation, and QBall, a molecular dynamics simulation. The
view showed the differences in traffic load in the various torus
directions given various node mappings. The 3D torus view
[5] was also used to verify the topological layout of particular
node mappings.
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